Ramsey's Theorem for Pairs and $k$ Colors as a Sub-Classical Principle of Arithmetic

نویسندگان

  • Stefano Berardi
  • Silvia Steila
چکیده

The purpose is to study the strength of Ramsey’s Theorem for pairs restricted to recursive assignments of k-many colors, with respect to Intuitionistic Heyting Arithmetic. We prove that for every natural number k ≥ 2, Ramsey’s Theorem for pairs and recursive assignments of k colors is equivalent to the Limited Lesser Principle of Omniscience for Σ 3 formulas over Heyting Arithmetic. Alternatively, the same theorem over intuitionistic arithmetic is equivalent to: for every recursively enumerable infinite k-ary tree there is some i < k and some branch with infinitely many children of index i.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ramsey Theorem for Pairs As a Classical Principle in Intuitionistic Arithmetic

We produce a first order proof of a famous combinatorial result, Ramsey Theorem for pairs and in two colors. Our goal is to find the minimal classical principle that implies the “miniature” version of Ramsey we may express in Heyting Arithmetic HA. We are going to prove that Ramsey Theorem for pairs with recursive assignments of two colors is equivalent in HA to the sub-classical principle Σ3-L...

متن کامل

Ramsey’s Theorem for pairs in k colors in the hierarchy of classical principles

The purpose of this work is to study, from the viewpoint of first order arithmetic (we have no set variables, the only sets are the arithmetical sets), Ramsey’s Theorem for pairs for a recursive assignment of k-many colors in order to find some principle of classical logic equivalent to it in HA. We proved that it is equivalent in HA to Σ3-LLPO, that is the Limited Lesser Principle of Omniscien...

متن کامل

Sub-Ramsey Numbers for Arithmetic Progressions

Let the integers 1, . . . , n be assigned colors. Szemerédi’s theorem implies that if there is a dense color class then there is an arithmetic progression of length three in that color. We study the conditions on the color classes forcing totally multicolored arithmetic progressions of length 3. Let f(n) be the smallest integer k such that there is a coloring of {1, . . . , n} without totally m...

متن کامل

On rainbow 4-term arithmetic progressions

{sl Let $[n]={1,dots, n}$ be colored in $k$ colors. A rainbow AP$(k)$ in $[n]$ is a $k$ term arithmetic progression whose elements have different colors. Conlon, Jungi&#039;{c} and Radoiv{c}i&#039;{c} cite{conlon} prove that there exists an equinumerous 4-coloring of $[4n]$ which is rainbow AP(4) free, when $n$ is even. Based on their construction, we show that such a coloring of $[4n]$...

متن کامل

A Schur-type Addition Theorem for Primes

Thus if all primes are colored with k colors, then there exist arbitrarily long monochromatic arithmetic progressions. This is a van der Waerden-type [9] theorem for primes. (The well-known van der Waerden theorem states that for any k-coloring of all positive integers, there exist arbitrarily long monochromatic arithmetic progressions.) On the other hand, Schur’s theorem [7] is another famous ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Symb. Log.

دوره 82  شماره 

صفحات  -

تاریخ انتشار 2017